[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Consequences of Mild, Moderate & Severe Plagiarism

Plagiarism: 5 Potential Legal Consequences

When Philadelphia’s Foul-Mouthed Cop-Turned-Mayor Invented White Identity Politics

Trump Wanted to Pardon Assange and Snowden. Blocked by RINOs.

What The Pentagon Is Planning Against Trump Will Make Your Blood Run Cold Once Revealed

How Trump won the Amish vote in Pennsylvania

FEC Filings Show Kamala Harris Team Blew Funds On Hollywood Stars, Private Jets

Israel’s Third Lebanon War is underway: What you need to know

LEAK: First Behind-The-Scenes Photos Of Kamala After Getting DESTROYED By Trump | Guzzling Wine!🍷

Scott Ritter Says: Netanyahu's PAINFUL Stumble Pushes Tel Aviv Into Its WORST NIGHTMARE

These Are Trump's X-Men | Dr. Jordan B. Peterson

Houthis (Yemen) Breached THAAD. Israel Given a Dud Defense!!

Yuma County Arizona Doubles Its Outstanding Votes Overnight They're Stealing the Race from Kari Lake

Trump to withdraw U.S. troops from northern Syria

Trump and RFK created websites for the people to voice their opinion on people the government is hiring

Woke Georgia DA Deborah Gonzalez pummeled in re-election bid after refusing Laken Riley murder case

Trump has a choice: Obliterate Palestine or end the war

Rod Blagojevich: Kamala’s Corruption, & the Real Cause of the Democrat Party’s Spiral Into Insanity

Israel's Defense Shattered by Hezbollah's New Iranian Super Missiles | Prof. Mohammad Marandi

Trump Wins Arizona in Clean Sweep of Swing States in US Election

TikTok Harlots Pledge in Droves: No More Pussy For MAGA Fascists!

Colonel Douglas Macgregor:: Honoring Veteran's Day

Low-Wage Nations?

Trump to pull US out of Paris climate agreement NYT

Pixar And Disney Animator Bolhem Bouchiba Sentenced To 25 Years In Prison

Six C-17s, C-130s deploy US military assets to Northeastern Syria

SNL cast members unveil new "hot jacked" Trump character in MAGA-friendly cold open

Here's Why These Geopolitical And Financial Chokepoints Need Your Attention...

Former Army Chief Moshe Ya'alon Calls for Civil Disobedience to Protest Netanyahu Government

The Deep State against Trump


Science/Tech
See other Science/Tech Articles

Title: Iranian-American researcher produces smart anti-cancer medicine
Source: [None]
URL Source: http://www.presstv.ir/detail/235193.html
Published: Apr 10, 2012
Author: staff
Post Date: 2012-04-10 04:15:08 by Tatarewicz
Keywords: None
Views: 53
Comments: 1

Iranian researcher Dr. Omid Farrokhzad of Harvard Medical School has produced a smart cancer drug that is capable of targeting cancer cells in animals.

Farrokhzad and his colleagues made the drug in nano scale which enables it to distinguish and target cancer cells without causing common side effects of chemotherapy.

In popular cancer treatment with chemotherapy, both cancer cells and healthy ones are damaged.

“The method does not include chemotherapy side effects and the animal tests show that it can reach cancer cells 500-1000 percent more than chemotherapy,” Farrokhzad explained.

He also noted that the medicine will be ready to be used after the clinical studies are finished within the next five years.

Harvard has called the drug a ‘paradigm shift’ in cancer treatment.

FGP/TE


Poster Comment:

The cancer-killing technique involves a nanorobot made of DNA base pairs designed to chemically attach to the molecular configuration on the outside of the cancer cell and then inject a cell destroyer compound. Still in test-tube stage. Was featured on CBC Quirks and Quarks: http://www.cbc.ca/quirks/episode/

Post Comment   Private Reply   Ignore Thread  


TopPage UpFull ThreadPage DownBottom/Latest

#1. To: All (#0)

Similar technique shows promise at Northwestern:

Tiny Hitchhikers Attack Cancer Cells: Gold Nanostars First to Deliver Drug Directly to Cancer Cell Nucleus

ScienceDaily (Apr. 5, 2012) — Nanotechnology offers powerful new possibilities for targeted cancer therapies, but the design challenges are many. Northwestern University scientists now are the first to develop a simple but specialized nanoparticle that can deliver a drug directly to a cancer cell's nucleus -- an important feature for effective treatment.

They also are the first to directly image at nanoscale dimensions how nanoparticles interact with a cancer cell's nucleus.

"Our drug-loaded gold nanostars are tiny hitchhikers," said Teri W. Odom, who led the study of human cervical and ovarian cancer cells. "They are attracted to a protein on the cancer cell's surface that conveniently shuttles the nanostars to the cell's nucleus. Then, on the nucleus' doorstep, the nanostars release the drug, which continues into the nucleus to do its work."

Odom is the Board of Lady Managers of the Columbian Exposition Professor of Chemistry in the Weinberg College of Arts and Sciences and a professor of materials science and engineering in the McCormick School of Engineering and Applied Science.

Using electron microscopy, Odom and her team found their drug-loaded nanoparticles dramatically change the shape of the cancer cell nucleus. What begins as a nice, smooth ellipsoid becomes an uneven shape with deep folds. They also discovered that this change in shape after drug release was connected to cells dying and the cell population becoming less viable -- both positive outcomes when dealing with cancer cells.

The results are published in the journal ACS Nano.

Since this initial research, the researchers have gone on to study effects of the drug-loaded gold nanostars on 12 other human cancer cell lines. The effect was much the same. "All cancer cells seem to respond similarly," Odom said. "This suggests that the shuttling capabilities of the nucleolin protein for functionalized nanoparticles could be a general strategy for nuclear-targeted drug delivery."

The nanoparticle is simple and cleverly designed. It is made of gold and shaped much like a star, with five to 10 points. (A nanostar is approximately 25 nanometers wide.) The large surface area allows the researchers to load a high concentration of drug molecules onto the nanostar. Less drug would be needed than current therapeutic approaches using free molecules because the drug is stabilized on the surface of the nanoparticle.

The drug used in the study is a single-stranded DNA aptamer called AS1411. Approximately 1,000 of these strands are attached to each nanostar's surface.

The DNA aptamer serves two functions: it is attracted to and binds to nucleolin, a protein overexpressed in cancer cells and found on the cell surface (as well as within the cell). And when released from the nanostar, the DNA aptamer also acts as the drug itself.

Bound to the nucleolin, the drug-loaded gold nanostars take advantage of the protein's role as a shuttle within the cell and hitchhike their way to the cell nucleus. The researchers then direct ultrafast pulses of light -- similar to that used in LASIK surgery -- at the cells. The pulsed light cleaves the bond attachments between the gold surface and the thiolated DNA aptamers, which then can enter the nucleus.

In addition to allowing a large amount of drug to be loaded, the nanostar's shape also helps concentrate the light at the points, facilitating drug release in those areas. Drug release from nanoparticles is a difficult problem, Odom said, but with the gold nanostars the release occurs easily.

That the gold nanostar can deliver the drug without needing to pass through the nuclear membrane means the nanoparticle is not required to be a certain size, offering design flexibility. Also, the nanostars are made using a biocompatible synthesis, which is unusual for nanoparticles.

Odom envisions the drug-delivery method, once optimized, could be particularly useful in cases where tumors are fairly close to the skin's surface, such as skin and some breast cancers. (The light source would be external to the body.) Surgeons removing cancerous tumors also might find the gold nanostars useful for eradicating any stray cancer cells in surrounding tissue.

The above story is reprinted from materials provided by Northwestern University. The original article was written by Megan Fellman.

Tatarewicz  posted on  2012-04-10   4:50:54 ET  Reply   Trace   Private Reply  


TopPage UpFull ThreadPage DownBottom/Latest


[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]