[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Scientists unlock 30-year mystery: Rare micronutrient holds key to brain health and cancer defense

City of Fort Wayne proposing changes to food, alcohol requirements for Riverfront Liquor Licenses

Cash Jordan: Migrant MOB BLOCKS Whitehouse… Demands ‘11 Million Illegals’ Stay

Not much going on that I can find today

In Britain, they are secretly preparing for mass deaths

These Are The Best And Worst Countries For Work (US Last Place)-Life Balance

These Are The World's Most Powerful Cars

Doctor: Trump has 6 to 8 Months TO LIVE?!

Whatever Happened to Robert E. Lee's 7 Children

Is the Wailing Wall Actually a Roman Fort?

Israelis Persecute Americans

Israelis SHOCKED The World Hates Them

Ghost Dancers and Democracy: Tucker Carlson

Amalek (Enemies of Israel) 100,000 Views on Bitchute

ICE agents pull screaming illegal immigrant influencer from car after resisting arrest

Aaron Lewis on Being Blacklisted & Why Record Labels Promote Terrible Music

Connecticut Democratic Party Holds Presser To Cry About Libs of TikTok

Trump wants concealed carry in DC.

Chinese 108m Steel Bridge Collapses in 3s, 16 Workers Fall 130m into Yellow River

COVID-19 mRNA-Induced TURBO CANCERS.

Think Tank Urges Dems To Drop These 45 Terms That Turn Off Normies

Man attempts to carjack a New Yorker

Test post re: IRS

How Managers Are Using AI To Hire And Fire People

Israel's Biggest US Donor Now Owns CBS

14 Million Illegals Entered US in 2023: The Cost to Our Nation

American Taxpayers to Cover $3.5 Billion Pentagon Bill for U.S. Munitions Used Defending Israel

The Great Jonny Quest Documentary

This story About IRS Abuse Did Not Post

CDC Data Exposes Surge in Deaths Among Children of Covid-Vaxxed Mothers


Science/Tech
See other Science/Tech Articles

Title: Salt-and-water battery could help plug renewables gap
Source: [None]
URL Source: http://sciencealert.com.au/features/20122608-23687.html
Published: Aug 27, 2012
Author: ECOS Magazine
Post Date: 2012-08-28 03:58:33 by Tatarewicz
Keywords: None
Views: 27

Australian researchers have developed a sodium-ion-based battery which, they say, has the potential to solve one of sustainable energy’s greatest challenges – storing energy cheaply ‘offline’ after it has been generated.

Dr Manickam Minakshi and Dr Danielle Meyrick from Western Australia’s Murdoch University point out that, while the efficiency of wind and solar technologies has improved rapidly, the problem of storage has yet to be solved.

‘The central obstacle facing sustainable energy is unreliability. Wind turbines don’t turn on a still day. Solar doesn’t work at night and can be hampered in the day by cloud, dust or snow coverage,’ Dr Minakshi said.

‘To provide power at non-generation times, excess energy needs to be stored in batteries, but storage technologies now being considered, such as molten salt or molten sulfur, work at high temperatures, making them expensive and impractical.

‘Our water-based sodium-ion battery has shown excellent potential for affordable, low-temperature storage.’

Dr Minakshi said he was drawn to sodium because its chemical properties were similar to lithium, the element that powers most portable electronic devices. While lithium ion batteries are common in today’s consumer electronics, they require inbuilt safety mechanisms that can affect efficiency; as well, lithium batteries tend to fail after a few years.

The Murdoch University researchers say the main challenge they faced in developing a sodium-ion battery was finding cathode and anode materials capable of accommodating sodium’s ionic size – which is 2.5 times larger than that of lithium.

‘Ions travel out of the cathode and into the anode to form a current. As an imperfect analogy, you can think of [electrodes] as mesh filters that ions pass through. We had to find materials with larger gaps in their mesh,’ Dr Minakshi said.

After testing various metals and phosphates, Dr Minakshi’s team eventually found success with manganese dioxide as the cathode and a novel olivine sodium phosphate as the anode. The result is a safe, cost-effective battery with high energy density.

‘While the technology is too bulky for portable devices, it has excellent potential for large-scale use, including storing energy from wind turbines and solar farms for later feeding into local electricity grids, as well as use in industry,’ Dr Minakshi said.

‘Our research has reached the stage where we’re ready to move beyond our lab towards larger-scale commercialisation. This is a very exciting time.’

The battery has the added advantage of being based on globally abundant and affordable sodium, iron and manganese – putting green energy potential in the hands of the developing world.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]