[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

The INCREDIBLE Impacts of Methylene Blue

The LARGEST Eruptions since the Merapi Disaster in 2010 at Lewotobi Laki Laki in Indonesia

Feds ARREST 11 Leftists For AMBUSH On ICE, 2 Cops Shot, Organized Terror Cell Targeted ICE In Texas

What is quantum computing?

12 Important Questions We Should Be Asking About The Cover Up The Truth About Jeffrey Epstein

TSA quietly scraps security check that every passenger dreads

Iran Receives Emergency Airlift of Chinese Air Defence Systems as Israel Considers New Attacks

Russia reportedly used its new, inexpensive Chernika kamikaze drone in the Ukraine

Iran's President Says the US Pledged Israel Wouldn't Attack During Previous Nuclear Negotiations

Will Japan's Rice Price Shock Lead To Government Collapse And Spark A Global Bond Crisis

Beware The 'Omniwar': Catherine Austin Fitts Fears 'Weaponization Of Everything'

Roger Stone: AG Pam Bondi Must Answer For 14 Terabytes Claim Of Child Torture Videos!

'Hit Us, Please' - America's Left Issues A 'Broken Arrow' Signal To Europe

Cash Jordan Trump Deports ‘Thousands of Migrants’ to Africa… on Purpose

Gunman Ambushes Border Patrol Agents In Texas Amid Anti-ICE Rhetoric From Democrats

Texas Flood

Why America Built A Forest From Canada To Texas

Tucker Carlson Interviews President of Iran Mosoud Pezeshkian

PROOF Netanyahu Wants US To Fight His Wars

RAPID CRUSTAL MOVEMENT DETECTED- Are the Unusual Earthquakes TRIGGER for MORE (in Japan and Italy) ?

Google Bets Big On Nuclear Fusion

Iran sets a world record by deporting 300,000 illegal refugees in 14 days

Brazilian Women Soccer Players (in Bikinis) Incredible Skills

Watch: Mexico City Protest Against American Ex-Pat 'Invasion' Turns Viole

Kazakhstan Just BETRAYED Russia - Takes gunpowder out of Putin’s Hands

Why CNN & Fareed Zakaria are Wrong About Iran and Trump

Something Is Going Deeply WRONG In Russia

329 Rivers in China Exceed Flood Warnings, With 75,000 Dams in Critical Condition

Command Of Russian Army 'Undermined' After 16 Of Putin's Generals Killed At War, UK Says

Rickards: Superintelligence Will Never Arrive


Science/Tech
See other Science/Tech Articles

Title: Researchers Find a Way to Make Steel Without Greenhouse-Gas Emissions
Source: [None]
URL Source: [None]
Published: May 11, 2013
Author: staff
Post Date: 2013-05-11 01:13:59 by Tatarewicz
Keywords: None
Views: 21

Science Daily: May 8, 2013 — Anyone who has seen pictures of the giant, red-hot cauldrons in which steel is made -- fed by vast amounts of carbon, and belching flame and smoke -- would not be surprised to learn that steelmaking is one of the world's leading industrial sources of greenhouse gases. But remarkably, a new process developed by MIT researchers could change all that. Share This:

The new process even carries a couple of nice side benefits: The resulting steel should be of higher purity, and eventually, once the process is scaled up, cheaper. Donald Sadoway, the John F. Elliott Professor of Materials Chemistry at MIT and senior author of a new paper describing the process, says this could be a significant "win, win, win" proposition.

The paper, co-authored by Antoine Allanore, the Thomas B. King Assistant Professor of Metallurgy at MIT, and former postdoc Lan Yin (now a postdoc at the University of Illinois at Urbana-Champaign), has just been published in the journal Nature.

Worldwide steel production currently totals about 1.5 billion tons per year. The prevailing process makes steel from iron ore -- which is mostly iron oxide -- by heating it with carbon; the process forms carbon dioxide as a byproduct. Production of a ton of steel generates almost two tons of CO2 emissions, according to steel industry figures, accounting for as much as 5 percent of the world's total greenhouse-gas emissions.

The industry has met little success in its search for carbon-free methods of manufacturing steel. The idea for the new method, Sadoway says, arose when he received a grant from NASA to look for ways of producing oxygen on the moon -- a key step toward future lunar bases.

Sadoway found that a process called molten oxide electrolysis could use iron oxide from the lunar soil to make oxygen in abundance, with no special chemistry. He tested the process using lunar-like soil from Meteor Crater in Arizona -- which contains iron oxide from an asteroid impact thousands of years ago -- finding that it produced steel as a byproduct.

Sadoway's method used an iridium anode, but since iridium is expensive and supplies are limited, that's not a viable approach for bulk steel production on Earth. But after more research and input from Allanore, the MIT team identified an inexpensive metal alloy that can replace the iridium anode in molten oxide electrolysis.

It wasn't an easy problem to solve, Sadoway explains, because a vat of molten iron oxide, which must be kept at about 1600 degrees Celsius, "is a really challenging environment. The melt is extremely aggressive. Oxygen is quick to attack the metal."

Many researchers had tried to use ceramics, but these are brittle and can shatter easily. "I had always eschewed that approach," Sadoway says.

But Allanore adds, "There are only two classes of materials that can sustain these high temperatures -- metals or ceramics." Only a few metals remain solid at these high temperatures, so "that narrows the number of candidates," he says.

Allanore, who worked in the steel industry before joining MIT, says progress has been slow both because experiments are difficult at these high temperatures, and also because the relevant expertise tends to be scattered across disciplines. "Electrochemistry is a multidisciplinary problem, involving chemical, electrical and materials engineering," he says.

The problem was solved using an alloy that naturally forms a thin film of metallic oxide on its surface: thick enough to prevent further attack by oxygen, but thin enough for electric current to flow freely through it. The answer turned out to be an alloy of chromium and iron -- constituents that are "abundant and cheap," Sadoway says.

In addition to producing no emissions other than pure oxygen, the process lends itself to smaller-scale factories: Conventional steel plants are only economical if they can produce millions of tons of steel per year, but this new process could be viable for production of a few hundred thousand tons per year, he says.

Apart from eliminating the emissions, the process yields metal of exceptional purity, Sadoway says. What's more, it could also be adapted to carbon-free production of metals and alloys including nickel, titanium and ferromanganese, with similar advantages.

Ken Mills, a visiting professor of materials at Imperial College, London, says the approach outlined in this paper "seems very sound to me," but he cautions that unless legislation requires the industry to account for its greenhouse-gas production, it's unclear whether the new technique would be cost-competitive. Nevertheless, he says, it "should be followed up, as the authors suggest, with experiments using a more industrial configuration."

Sadoway, Allanore and a former student have formed a company to develop the concept, which is still at the laboratory scale, to a commercially viable prototype electrolysis cell. They expect it could take about three years to design, build and test such a reactor.

The research was supported by the American Iron and Steel Institute and the U.S. Department of Energy.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]