[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Scientists unlock 30-year mystery: Rare micronutrient holds key to brain health and cancer defense

City of Fort Wayne proposing changes to food, alcohol requirements for Riverfront Liquor Licenses

Cash Jordan: Migrant MOB BLOCKS Whitehouse… Demands ‘11 Million Illegals’ Stay

Not much going on that I can find today

In Britain, they are secretly preparing for mass deaths

These Are The Best And Worst Countries For Work (US Last Place)-Life Balance

These Are The World's Most Powerful Cars

Doctor: Trump has 6 to 8 Months TO LIVE?!

Whatever Happened to Robert E. Lee's 7 Children

Is the Wailing Wall Actually a Roman Fort?

Israelis Persecute Americans

Israelis SHOCKED The World Hates Them

Ghost Dancers and Democracy: Tucker Carlson

Amalek (Enemies of Israel) 100,000 Views on Bitchute

ICE agents pull screaming illegal immigrant influencer from car after resisting arrest

Aaron Lewis on Being Blacklisted & Why Record Labels Promote Terrible Music

Connecticut Democratic Party Holds Presser To Cry About Libs of TikTok

Trump wants concealed carry in DC.

Chinese 108m Steel Bridge Collapses in 3s, 16 Workers Fall 130m into Yellow River

COVID-19 mRNA-Induced TURBO CANCERS.

Think Tank Urges Dems To Drop These 45 Terms That Turn Off Normies

Man attempts to carjack a New Yorker

Test post re: IRS

How Managers Are Using AI To Hire And Fire People

Israel's Biggest US Donor Now Owns CBS

14 Million Illegals Entered US in 2023: The Cost to Our Nation

American Taxpayers to Cover $3.5 Billion Pentagon Bill for U.S. Munitions Used Defending Israel

The Great Jonny Quest Documentary

This story About IRS Abuse Did Not Post

CDC Data Exposes Surge in Deaths Among Children of Covid-Vaxxed Mothers


Science/Tech
See other Science/Tech Articles

Title: Beyond Silicon: Transistors Without Semiconductors
Source: [None]
URL Source: [None]
Published: Jun 24, 2013
Author: staff
Post Date: 2013-06-24 00:17:56 by Tatarewicz
Keywords: None
Views: 18

ScienceDaily:

June 21, 2013 — For decades, electronic devices have been getting smaller, and smaller, and smaller. It's now possible -- even routine -- to place millions of transistors on a single silicon chip. Share This:

But transistors based on semiconductors can only get so small. "At the rate the current technology is progressing, in 10 or 20 years, they won't be able to get any smaller," said physicist Yoke Khin Yap of Michigan Technological University. "Also, semiconductors have another disadvantage: they waste a lot of energy in the form of heat."

Scientists have experimented with different materials and designs for transistors to address these issues, always using semiconductors like silicon. Back in 2007, Yap wanted to try something different that might open the door to a new age of electronics.

"The idea was to make a transistor using a nanoscale insulator with nanoscale metals on top," he said. "In principle, you could get a piece of plastic and spread a handful of metal powders on top to make the devices, if you do it right. But we were trying to create it in nanoscale, so we chose a nanoscale insulator, boron nitride nanotubes, or BNNTs for the substrate."

Yap's team had figured out how to make virtual carpets of BNNTs,which happen to be insulators and thus highly resistant to electrical charge. Using lasers, the team then placed quantum dots (QDs) of gold as small as three nanometers across on the tops of the BNNTs, forming QDs-BNNTs. BNNTs are the perfect substrates for these quantum dots due to their small, controllable, and uniform diameters, as well as their insulating nature. BNNTs confine the size of the dots that can be deposited.

In collaboration with scientists at Oak Ridge National Laboratory (ORNL), they fired up electrodes on both ends of the QDs-BNNTs at room temperature, and something interesting happened. Electrons jumped very precisely from gold dot to gold dot, a phenomenon known as quantum tunneling.

"Imagine that the nanotubes are a river, with an electrode on each bank. Now imagine some very tiny stepping stones across the river," said Yap. "The electrons hopped between the gold stepping stones. The stones are so small, you can only get one electron on the stone at a time. Every electron is passing the same way, so the device is always stable."

Yap's team had made a transistor without a semiconductor. When sufficient voltage was applied, it switched to a conducting state. When the voltage was low or turned off, it reverted to its natural state as an insulator.

Furthermore, there was no "leakage": no electrons from the gold dots escaped into the insulating BNNTs, thus keeping the tunneling channel cool. In contrast, silicon is subject to leakage, which wastes energy in electronic devices and generates a lot of heat.

Other people have made transistors that exploit quantum tunneling, says Michigan Tech physicist John Jaszczak, who has developed the theoretical framework for Yap's experimental research. However, those tunneling devices have only worked in conditions that would discourage the typical cellphone user.

"They only operate at liquid-helium temperatures," said Jaszczak.

The secret to Yap's gold-and-nanotube device is its submicroscopic size: one micron long and about 20 nanometers wide. "The gold islands have to be on the order of nanometers across to control the electrons at room temperature," Jaszczak said. "If they are too big, too many electrons can flow." In this case, smaller is truly better: "Working with nanotubes and quantum dots gets you to the scale you want for electronic devices."

"Theoretically, these tunneling channels can be miniaturized into virtually zero dimension when the distance between electrodes is reduced to a small fraction of a micron," said Yap.

Yap has filed for a full international patent on the technology.


Poster Comment:

Could be something more useful for gold than a store of value.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]