[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

City of Fort Wayne proposing changes to food, alcohol requirements for Riverfront Liquor Licenses

Cash Jordan: Migrant MOB BLOCKS Whitehouse… Demands ‘11 Million Illegals’ Stay

Not much going on that I can find today

In Britain, they are secretly preparing for mass deaths

These Are The Best And Worst Countries For Work (US Last Place)-Life Balance

These Are The World's Most Powerful Cars

Doctor: Trump has 6 to 8 Months TO LIVE?!

Whatever Happened to Robert E. Lee's 7 Children

Is the Wailing Wall Actually a Roman Fort?

Israelis Persecute Americans

Israelis SHOCKED The World Hates Them

Ghost Dancers and Democracy: Tucker Carlson

Amalek (Enemies of Israel) 100,000 Views on Bitchute

ICE agents pull screaming illegal immigrant influencer from car after resisting arrest

Aaron Lewis on Being Blacklisted & Why Record Labels Promote Terrible Music

Connecticut Democratic Party Holds Presser To Cry About Libs of TikTok

Trump wants concealed carry in DC.

Chinese 108m Steel Bridge Collapses in 3s, 16 Workers Fall 130m into Yellow River

COVID-19 mRNA-Induced TURBO CANCERS.

Think Tank Urges Dems To Drop These 45 Terms That Turn Off Normies

Man attempts to carjack a New Yorker

Test post re: IRS

How Managers Are Using AI To Hire And Fire People

Israel's Biggest US Donor Now Owns CBS

14 Million Illegals Entered US in 2023: The Cost to Our Nation

American Taxpayers to Cover $3.5 Billion Pentagon Bill for U.S. Munitions Used Defending Israel

The Great Jonny Quest Documentary

This story About IRS Abuse Did Not Post

CDC Data Exposes Surge in Deaths Among Children of Covid-Vaxxed Mothers

This Interview in Munich in 1992 with Gudrun Himmler. (Heinrich Himmler's daughter)


Science/Tech
See other Science/Tech Articles

Title: Researchers Regenerate a Fully Functional Bioengineered Salivary Gland
Source: [None]
URL Source: http://www.sciencedaily.com/releases/2013/10/131002102313
Published: Oct 4, 2013
Author: staff
Post Date: 2013-10-04 05:42:10 by Tatarewicz
Keywords: None
Views: 12

ScienceDaily Oct. 2, 2013 — The research group led by Professor Takashi Tsuji of Tokyo University of Science and Organ Technologies Inc. has provided a proof-of-concept for bioengineered mature organ replacement as a regenerative therapy. Share This:

Current advances in regenerative therapies have been influenced by the study of embryonic development, stem cell biology, and tissue engineering technologies. The ultimate goal of regenerative therapy is to develop fully functional bioengineered tissues that can replace lost or damaged organs following disease, injury or aging. A research group led by Professor Takashi Tsuji (Professor in the Research Institute for Science and Technology, Tokyo University of Science, and Director of Organ Technologies Inc.) has provided a proof-of-concept for bioengineered mature organ replacement as a regenerative therapy.

Dr. Tsuji's research group (M. Ogawa et al.) reports the fully functional regeneration of a salivary gland that reproduces the morphogenesis induced by reciprocal epithelial and mesenchymal interactions through the orthotopic transplantation of a bioengineered salivary gland germ as a regenerative organ replacement therapy. The bioengineered germ developed into a mature gland through acinar formations with the myoepithelium and innervation. The bioengineered submandibular gland produced saliva in response to the administration of pilocarpine and gustatory stimulation by citrate, protected against oral bacterial infection and restored normal swallowing in a salivary gland defect mouse model. Thus, this study provides a proof-of-concept for bioengineered salivary gland regeneration as a potential treatment for xerostomia.

This research was performed in collaboration with Professor Tetsuhiko Tachikawa (Department of Oral Pathology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, JAPAN).

Salivary glands play essential roles in normal upper gastrointestinal tract function and oral health, including the digestion of starch by salivary amylase, swallowing and the maintenance of tooth hard tissues through the production of saliva. There are three major salivary glands -- the parotid, submandibular and sublingual glands -- as well as minor salivary glands. Salivary glands are composedof duct, acinar, and myoepithelial cells.

The disease of salivary gland.

One concept that may be applicable for restoring salivary glands is regenerative therapy, which involves tissue stem-cell transplantation to restore damaged tissues and organs in a variety of diseases. Furthermore, organ replacement regenerative therapy, which can replace lost or damaged organs with a fully functional bioengineered organ, is also expected to provide a novel therapeutic strategy for organ transplantation. Our recent studies have provided proof-of-concept that fully functional regeneration of ectodermal organs, such as teeth and hair follicles, can be achieved by the transplantation of bioengineered organ germs that were reconstituted by our organ germ method (Nat. Methods 4, 227-30, 2007) for organ replacement regenerative therapy (PNAS 106, 13475-13480, 2009, Nat. Commun., 3, 784, 2012)

We demonstrated that each bioengineered salivary gland germ, including the submandibular and sublingual glands, had the potential to regenerate into mature glands using our previously developed organ germ method. After three days in organ culture, all of the bioengineered salivary gland germs underwent branching morphogenesis, followed by stalk elongation and cleft formation.

Engraftment of a bioengineered salivary gland

Saliva, which is produced from serous- and mucous-type acinar cells, plays essential roles in oral function. Histological analysis using haematoxylin and eosin (HE) staining and periodic acid and Schiff (PAS) staining revealed a distinctive acinar structure, including serous acinar cells, in the bioengineered submandibular gland and mucous acinar cells in the bioengineered sublingual gland. E-cadherin and calponin proteins were detected in the acinar and duct cells as well as in myoepithelial cells, which enveloped acinar cells in these bioengineered glands. Innervations were also detected in the interstitial tissue among acinar cells, and neurofilament H (NF-H)-expressing nerve fibres connected to calponin-positive myoepithelial cells. Our research demonstrates that engrafted bioengineered salivary gland germ cells successfully formed correct tissue structures and could secrete saliva in response to neural stimulation.

Functional analysis of bioengineered saliva secretion

Saliva secretion is essential to the maintenance of oral health, and xerostomia causes various health problems, including dental caries, periodontal disease, bacterial infection and swallowing dysfunction. To semiquantitatively analyse saliva secretion, we performed fluorescein diffusion analysis. Briefly, fluorescent sodium test paper, which contains a fluorescent dye that dissolves in saliva drippings, was placed on the tongue. Dye diffusion was not observed during the observation period in the salivary gland defect mice. Gradual diffusion and disappearance of the fluorescein dye in the oral cavity was observed in mice transplanted with the bioengineered submandibular gland. The number of oral bacteria was drastically increased in salivary gland defect mice compared to normal mice. The number of bacterial colonies that formed in the mice engrafted with the bioengineered submandibular gland germ was significantly reduced compared to the number in salivary gland defect mice. These results indicate that the bioengineered submandibular gland has a cleansing function that prevents dryness and inhibits bacterial growth by secreting saliva into the oral cavity.

Functional recovery of swallowing and survival

CONCLUSION

Here, we demonstrate the regeneration of fully functional salivary glands through the orthotopic transplantation of a bioengineered salivary gland germ in adult mice. The bioengineered submandibular gland, which was transplanted using an inter-epithelial tissue-connecting plastic method, produced saliva in response to the administration of gustatory stimulation by citrate, protected against oral bacterial infection and restored swallowing in a mouse model of a salivary gland defect. Thus, this study provides a proof-of-concept for bioengineered salivary gland regeneration as a potential treatment of xerostomia. Further studies on the identification of stem cells as a source for the reconstitution of bioengineered salivary gland germs are warranted.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]