[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

City of Fort Wayne proposing changes to food, alcohol requirements for Riverfront Liquor Licenses

Cash Jordan: Migrant MOB BLOCKS Whitehouse… Demands ‘11 Million Illegals’ Stay

Not much going on that I can find today

In Britain, they are secretly preparing for mass deaths

These Are The Best And Worst Countries For Work (US Last Place)-Life Balance

These Are The World's Most Powerful Cars

Doctor: Trump has 6 to 8 Months TO LIVE?!

Whatever Happened to Robert E. Lee's 7 Children

Is the Wailing Wall Actually a Roman Fort?

Israelis Persecute Americans

Israelis SHOCKED The World Hates Them

Ghost Dancers and Democracy: Tucker Carlson

Amalek (Enemies of Israel) 100,000 Views on Bitchute

ICE agents pull screaming illegal immigrant influencer from car after resisting arrest

Aaron Lewis on Being Blacklisted & Why Record Labels Promote Terrible Music

Connecticut Democratic Party Holds Presser To Cry About Libs of TikTok

Trump wants concealed carry in DC.

Chinese 108m Steel Bridge Collapses in 3s, 16 Workers Fall 130m into Yellow River

COVID-19 mRNA-Induced TURBO CANCERS.

Think Tank Urges Dems To Drop These 45 Terms That Turn Off Normies

Man attempts to carjack a New Yorker

Test post re: IRS

How Managers Are Using AI To Hire And Fire People

Israel's Biggest US Donor Now Owns CBS

14 Million Illegals Entered US in 2023: The Cost to Our Nation

American Taxpayers to Cover $3.5 Billion Pentagon Bill for U.S. Munitions Used Defending Israel

The Great Jonny Quest Documentary

This story About IRS Abuse Did Not Post

CDC Data Exposes Surge in Deaths Among Children of Covid-Vaxxed Mothers

This Interview in Munich in 1992 with Gudrun Himmler. (Heinrich Himmler's daughter)


Science/Tech
See other Science/Tech Articles

Title: CRISPR for genetic Cures?
Source: [None]
URL Source: [None]
Published: Dec 8, 2013
Author: Kerry Grens
Post Date: 2013-12-08 05:44:07 by Tatarewicz
Keywords: None
Views: 16

CRISPR corrected a cataract-causing genetic defect in a mutant mouse (left); control cataract-model mouse (right). JINSONG LIIt was less than a year ago that scientists first applied CRISPR, a genome-editing technique, to human cells. In short order, the technique has taken off like wildfire. And now, two papers appearing in Cell Stem Cell today (December 5) show that CRISPR can be used to rewrite genetic defects to effectively cure diseases in mice and human stem cells.

“What’s significant about this is it’s taking CRISPR to that next step of what it can be used for, and in this case, it’s correcting mutations that cause disease,” said Charles Gersbach, a genomics researcher at Duke University, who was not involved in either study.

CRISPR stands for clustered regularly interspaced short palindromic repeats. These RNA sequences serve an immune function in archaea and bacteria, but in the last year or so, scientists have seized upon them to rewrite genes. The RNA sequence serves as a guide to target a DNA sequence in, say, a zygote or a stem cell. The guide sequence leads an enzyme, Cas9, to the DNA of interest. Cas9 can cut the double strand, nick it, or even knock down gene expression. After Cas9 injures the DNA, repair systems fix the sequence—or new sequences can be inserted.

In one of the new papers, a team from China used CRISPR/Cas9 to replace a single base pair mutation that causes cataracts in mice. The researchers, led by Jinsong Li at the Shanghai Institute for Biological Sciences, designed a guide RNA that led Cas9 to the mutant allele where it induced a cleavage of the DNA. Then using either the other wild-type allele or oligos given to the zygotes repair mechanisms corrected the sequence of the broken allele.

Li said that about 33 percent of the mutant zygotes that were injected with CRISPR/Cas9 grew up to be cataract-free mice. In an e-mail to The Scientist, Li said the efficiency of the technique was low, “and, for clinical purpose, the efficiency should reach 100 percent.”

Still, this was the first time CRISPR had been used to cure a disease in a whole animal, an advance that Jennifer Doudna, a leader in CRISPR technology at the University of California, Berkeley, said was encouraging. Both studies “show the potential for using the technology to correct disease-causing mutations, and that’s what very exciting here,” she said.

Hans Clevers, a stem cell researcher at the Hubrecht Institute in Utrecht, The Netherlands, led the other study, which used CRISPR/Cas9 to correct a defect associated with cystic fibrosis in human stem cells. The team’s target was the gene for an ion channel, cystic fibrosis transmembrane conductor receptor (CFTR). A deletion in CFTR causes the protein to misfold in cystic fibrosis patients.

Using cultured intestinal stem cells developed from cell samples from two children with cystic fibrosis, Clevers’s team was able to correct the defect using CRISPR along with a donor plasmid containing the reparative sequence to be inserted. The researchers then grew the cells into intestinal “organoids,” or miniature guts, and showed that they functioned normally. In this case, about half of clonal organoids underwent the proper genetic correction, Clevers said.

For both studies, the researchers did not have to make significant modifications to existing CRISPR protocols. Clevers said in an e-mail to The Scientist that, compared with other gene editing techniques, CRISPR was straightforward. “We tried TALENs [transcription activator-like effector nucleases] and Zinc finger approaches. CRISPR is exquisitely fast and simple,” Clevers said. Li agreed. “I think CRISPR/Cas9 system may be the easiest strategy to cure genetic disease than any other available gene-editing techniques,” he said.

One limitation of CRISPR is that the approach can create off-target effects—alterations to sites other than the target DNA. In both studies, off-target effects were relatively rare, said Gersbach. “While reducing off-target effects is a priority, it’s unrealistic to think you’d be able to get rid of all off-target effects,” he told The Scientist.

While the approach is far from ready for prime time, the results of both these studies show promise for future clinical potential. “I think each time an advance like this is made, people are more sure that this is a technique that is likely to be useful in treating humans,” said Doudna.

G. Schwank, “Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients,” Cell Stem Cell, 13:653–58, 2013.

Y. Wu, “Correction of a genetic disease in mouse via use of CRISPR-Cas9,” Cell Stem Cell, 13:659–62, 2013.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]