[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Quantum Meets AI: Morgan Stanley Maps Out Next Tech Frontier

670,000+ Swept Away as Dams Burst in Canton China, Triggering Deadly Flood!

Senate Version Of Trump Tax Bill Adds $3.3 Trillion To Deficit, $500BN More Than The House; Debt Ceiling Raised By $5 Trillion

Iran Disables GPS, Joins China’s Beidou — The End of U.S. Satellite Dominance?

Ukraine's Withdrawal From Anti-Personnel Landmine Treaty Could Haunt Generations

71 killed in Israeli attack on Iran's Evin Prison

Practice Small, Daily Acts Of Sabotage Against The Imperial Machine

"EVERYONE'S BEEN SHOT UP HERE": Arsonists Set Wildfire In Northern Idaho, Open Fire On Firefighters, Police In Ambush

Trump has Putin trapped, and the Kremlin knows it

Kamala's comeback bid sparks Democrat donor meltdown amid fears she'll sink party in California

Russia's New Grom-A1 100 KM Range Guided Bomb- 600 Kilo

UKRAINIAN CONSULATE IN ITALY CAUGHT TRAFFICKING WEAPONS, ORGANS & CHILDREN WITH THE MAFIA

Andrew Cuomo to stay on ballot for NYC mayor in November general election

The life of the half-immortal who advised CCP (End of CCP in 2026?)

Millions Flee China’s Top Cities

Violence begets violence: IDF troops beaten, choked, rammed by Jewish settlers in West Bank

Netanyahu Says It's Antisemitic For Israeli Soldiers To Describe Their Own Atrocities

China's Economy Spirals With No End In Sight, Says Kyle Bass

American Bread Cannot Be Sold in Most Countries

Woman Spent Her Life To Prove 796 Babies were buried under Catholic Home

Japan Got Rich Without Getting Fat

US Spent $495.3 million to fire 39 THAAD Missiles

Private Mail Back Online

Senior Israeli officials tell Israeli media that they intend to attack Iran after ceasefire.

Palestinian Woman Nails Israeli

Tucker Carlson: Marjorie Taylor Greene:

Diverse Coney Island in New York looks unrecognizable after third world invasion

Corbett Report: Palantir at the Heart of Iran

Haifa, Israel Before and After

Nobody can hear you anymore.


Science/Tech
See other Science/Tech Articles

Title: Neuroscience's grand question: How do neurons regenerate without losing memory?
Source: [None]
URL Source: http://www.sciencedaily.com/releases/2014/05/140521133514.htm
Published: May 26, 2014
Author: staff
Post Date: 2014-05-26 23:59:22 by Tatarewicz
Keywords: None
Views: 57

ScienceDaily:

Neurons live for many years but their components, the proteins and molecules that make up the cell, are continually being replaced. How this continuous rebuilding takes place without affecting our ability to think, remember, learn or otherwise experience the world is one of neuroscience’s biggest questions. [Click to enlarge image]

When your car needs a new spark plug, you take it to a shop where it sits, out of commission, until the repair is finished. But what if your car could replace its own spark plug while speeding down the Mass Pike?

Of course, cars can't do that, but our nervous system does the equivalent, rebuilding itself continually while maintaining full function.

Neurons live for many years but their components, the proteins and molecules that make up the cell are continually being replaced. How this continuous rebuilding takes place without affecting our ability to think, remember, learn or otherwise experience the world is one of neuroscience's biggest questions.

And it's one that has long intrigued Eve Marder, the Victor and Gwendolyn Beinfield Professor of Neuroscience. As reported in Neuron on May 21, Marder's lab has built a new theoretical model to understand how cells monitor and self-regulate their properties in the face of continual turnover of cellular components.

Ion channels, the molecular gates on the surface of cells, determine neuronal properties needed to regulate everything from the size and speed of limb movement to how sensory information is processed. Different combinations of types of ion channels are found in each kind of neuron. Receptors are the molecular 'microphones' that enable neurons to communicate with each other.

Receptors and ion channels are constantly turning over, so cells need to regulate the rate at which they are replaced in a way that avoids disrupting normal nervous system function. Scientists have considered the idea of a 'factory' or 'default' setting for the numbers of ion channels and receptors in each neuron. But this idea seems implausible because there is so much change in a neuron's environment over the course of its life.

If there is no factory setting, then neurons need an internal gauge to monitor electrical activity and adjust ion channel expression accordingly, the team asserts. Because a single neuron is always part of a larger circuit, it also needs to do this while maintaining homeostasis across the nervous system.

The Marder lab built a new theoretical model of ion channel regulation based on the concept of an internal monitoring system. The team, comprised of postdoctoral fellow Timothy O'Leary, lab technician Alex Williams, Alessio Franci, of the University of Liege in Belgium, and Marder, discovered that cells don't need to measure every detail of activity to keep the system functioning. In fact, too much detail can derail the process.

"Certain target properties can contradict each other," O'Leary says. "You would not set your air conditioning to 64 degrees and your heat to 77 degrees. One might win over the other but they would be continually fighting each other and you would end up paying a big energy bill."

The team also learned that cells can have similar properties but different ion channel expression rates -- like cellular homophones, they sound alike but look very different.

The model showed that the very internal monitoring system designed to control runaway electrical activity can actually lead to neuronal hyperexcitability, the basis of seizures. Even if set points are maintained in single neurons, overall homeostasis in the system can be lost.

The study represents an important advance in understanding the most complex machinery ever built -- the human brain. And it may lead to entirely different therapeutic strategies for treating diseases, O'Leary says. "To understand and cure some diseases, we need to pick apart and understand how biological systems control their internal properties when they are in a normal healthy state, and this model could help researchers do that."


Poster Comment:

hom·o·phone (hOm′Y-fMn′, hM′mY-) n. One of two or more words, such as night and knight, that are pronounced the same but differ in meaning, origin, and sometimes spelling. ho·moph′o·nous (hM-mOf′Y-nYs) adj. homophone (ÈhRmYÌfYŠn) n 1. (Linguistics) one of a group of words pronounced in the same way but differing in meaning or spelling or both, as for example bear and bare 2. (Letters of the Alphabet (Foreign)) a written letter or combination of letters that represents the same speech sound as another: ``ph'' is a homophone of ``f'' in English. hom•o•phone (ÈhRm YÌfoŠn, ÈhoŠ mY-) n. 1. a word pronounced the same as another but differing in meaning, whether spelled the same way or not, as heir and air. 2. a written element that represents the same spoken unit as another, as ks, a homophone of x in English. [1615–25; back formation from homophonous] syn: See homonym. Noun 1. homophone - two words are homophones if they are pronounced the same way but differ in meaning or spelling or both (e.g. bare and bear) homonym - two words are homonyms if they are pronounced or spelled the same way but have different meanings

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]