[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Earth Changes Summary - June 2025: Extreme Weather, Planetary Upheaval,

China’s Tofu-Dreg High-Speed Rail Station Ceiling Suddenly Floods, Steel Bars Snap

Russia Moves to Nationalize Country's Third Largest Gold Mining Firm

Britain must prepare for civil war | David Betz

The New MAGA Turf War Over National Intelligence

Happy fourth of july

The Empire Has Accidentally Caused The Rebirth Of Real Counterculture In The West

Workers install 'Alligator Alcatraz' sign for Florida immigration detention center

The Biggest Financial Collapse in China’s History Is Here, More Terrifying Than Evergrande!

Lightning

Cash Jordan NYC Courthouse EMPTIED... ICE Deports 'Entire Building

Trump Sparks Domestic Labor Renaissance: Native-Born Workers Surge To Record High As Foreign-Born Plunge

Mister Roberts (1965)

WE BROKE HIM!! [Early weekend BS/nonsense thread]

I'm going to send DOGE after Elon." -Trump

This is the America I grew up in. We need to bring it back

MD State Employee may get Arrested by Sheriff for reporting an Illegal Alien to ICE

RFK Jr: DTaP vaccine was found to have link to Autism

FBI Agents found that the Chinese manufactured fake driver’s licenses and shipped them to the U.S. to help Biden...

Love & Real Estate: China’s new romance scam

Huge Democrat shift against Israel stuns CNN

McCarthy Was Right. They Lied About Everything.

How Romans Built Domes

My 7 day suspension on X was lifted today.

They Just Revealed EVERYTHING... [Project 2029]

Trump ACCUSED Of MASS EXECUTING Illegals By DUMPING Them In The Ocean

The Siege (1998)

Trump Admin To BAN Pride Rainbow Crosswalks, DoT Orders ALL Distractions REMOVED

Elon Musk Backing Thomas Massie Against Trump-AIPAC Challenger

Skateboarding Dog


Science/Tech
See other Science/Tech Articles

Title: 3-D bioprinting builds a better blood vessel
Source: [None]
URL Source: http://www.sciencedaily.com/releases/2014/05/140530190554.htm
Published: Jun 5, 2014
Author: staff
Post Date: 2014-06-05 03:02:44 by Tatarewicz
Keywords: None
Views: 15

The tangled highway of blood vessels that twists and turns inside our bodies, delivering essential nutrients and disposing of hazardous waste to keep our organs working properly has been a conundrum for scientists trying to make artificial vessels from scratch. Now a team from Brigham and Women's Hospital (BWH) has made headway in fabricating blood vessels using a three-dimensional (3D) bioprinting technique.

The study is published online this month in Lab on a Chip.

"Engineers have made incredible strides in making complex artificial tissues such as those of the heart, liver and lungs," said senior study author, Ali Khademhosseini, PhD, biomedical engineer, and director of the BWH Biomaterials Innovation Research Center. "However, creating artificial blood vessels remains a critical challenge in tissue engineering. We've attempted to address this challenge by offering a unique strategy for vascularization of hydrogel constructs that combine advances in 3D bioprinting technology and biomaterials."

The researchers first used a 3D bioprinter to make an agarose (naturally derived sugar-based molecule) fiber template to serve as the mold for the blood vessels. They then covered the mold with a gelatin-like substance called hydrogel, forming a cast over the mold which was then reinforced via photocrosslinks.

"Our approach involves the printing of agarose fibers that become the blood vessel channels. But what is unique about our approach is that the fiber templates we printed are strong enough that we can physically remove them to make the channels," said Khademhosseini. "This prevents having to dissolve these template layers, which may not be so good for the cells that are entrapped in the surrounding gel."

Khademhosseini and his team were able to construct microchannel networks exhibiting various architectural features. They were also able to successfully embed these functional and perfusable microchannels inside a wide range of commonly used hydrogels, such as methacrylated gelatin or poly(ethylene glycol)-based hydrogels at different concentrations.

Methacrylated gelatin laden with cells, in particular, was used to show how their fabricated vascular networks functioned to improve mass transport, cellular viability and cellular differentiation. Moreover, successful formation of endothelial monolayers within the fabricated channels was achieved.

"In the future, 3D printing technology may be used to develop transplantable tissues customized to each patient's needs or be used outside the body to develop drugs that are safe and effective," said Khademhosseini.

Journal Reference:

Luiz E. Bertassoni, Martina Cecconi, Vijayan Manoharan, Mehdi Nikkhah, Jesper Hjortnaes, Ana Luiza Cristino, Giada Barabaschi, Danilo Demarchi, Mehmet R. Dokmeci, Yunzhi Yang, Ali Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014; DOI: 10.1039/C4LC00030G

Brigham and Women's Hospital. "3-D bioprinting builds a better blood vessel." ScienceDaily. ScienceDaily, 30 May 2014. http://.

Post Comment   Private Reply   Ignore Thread  



[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]