[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

Not much going on that I can find today

In Britain, they are secretly preparing for mass deaths

These Are The Best And Worst Countries For Work (US Last Place)-Life Balance

These Are The World's Most Powerful Cars

Doctor: Trump has 6 to 8 Months TO LIVE?!

Whatever Happened to Robert E. Lee's 7 Children

Is the Wailing Wall Actually a Roman Fort?

Israelis Persecute Americans

Israelis SHOCKED The World Hates Them

Ghost Dancers and Democracy: Tucker Carlson

Amalek (Enemies of Israel) 100,000 Views on Bitchute

ICE agents pull screaming illegal immigrant influencer from car after resisting arrest

Aaron Lewis on Being Blacklisted & Why Record Labels Promote Terrible Music

Connecticut Democratic Party Holds Presser To Cry About Libs of TikTok

Trump wants concealed carry in DC.

Chinese 108m Steel Bridge Collapses in 3s, 16 Workers Fall 130m into Yellow River

COVID-19 mRNA-Induced TURBO CANCERS.

Think Tank Urges Dems To Drop These 45 Terms That Turn Off Normies

Man attempts to carjack a New Yorker

Test post re: IRS

How Managers Are Using AI To Hire And Fire People

Israel's Biggest US Donor Now Owns CBS

14 Million Illegals Entered US in 2023: The Cost to Our Nation

American Taxpayers to Cover $3.5 Billion Pentagon Bill for U.S. Munitions Used Defending Israel

The Great Jonny Quest Documentary

This story About IRS Abuse Did Not Post

CDC Data Exposes Surge in Deaths Among Children of Covid-Vaxxed Mothers

This Interview in Munich in 1992 with Gudrun Himmler. (Heinrich Himmler's daughter)

25 STRANGE Wild West Home Features You’ll Never See Again

Zionists DEMAND Megyn Kelly's Head!


Science/Tech
See other Science/Tech Articles

Title: Why you can't travel at the speed of light
Source: [None]
URL Source: https://www.theguardian.com/science ... y-of-relativity-speed-of-light
Published: Jan 12, 2014
Author: Alok Jha
Post Date: 2018-08-23 06:22:17 by BTP Holdings
Keywords: None
Views: 359
Comments: 3

Why you can't travel at the speed of light

A short history of Einstein's theory of relativity

Alok Jha

Sun 12 Jan 2014 06.51 EST

First published on Sun 12 Jan 2014 06.51 EST

Einstein's theory of special relativity. Photograph: Observer

Albert Einstein is famous for many things, not least his theories of relativity. The first, the special theory of relativity, was the one that began the physicist's reputation for tearing apart the classical worldview that had come before. Special relativity, a way of relating the motion of objects in the universe, led scientists to re-evaluate their assumptions about things as fundamental as time and space. And it led to important revelations about the relationship between energy and matter.

Special relativity was published by Einstein in 1905, in a paper titled "On the Electrodynamics of Moving Bodies". He came to it after picking on a conflict he noticed between the equations for electricity and magnetism, which the physicist James Clerk Maxwell had recently developed, and Isaac Newton's more established laws of motion.

Light, according to Maxwell, was a vibration in the electromagnetic field and it travelled at a constant speed in a vacuum. More than 100 years earlier, Newton had set down his laws of motion and, together with ideas from Galileo Galilei, these showed how the speed of an object would differ depend on who was measuring it and how they were moving relative to the object. A ball you are holding will seem still to you, even when you're in a moving car. But that ball will seem to be moving to anyone standing on the pavement.

But there was a problem in applying Newton's laws of motion to light. In Maxwell's equations, the speed of electromagnetic waves is a constant defined by the properties of the material through which the waves move. There is nothing in there that allows the speed of these waves to be different for different people depending on how they were moving relative to each other. Which is bizarre, if you think about it.

Imagine someone sitting in a stationary train, throwing a ball from where he's sitting to the opposite wall, a few metres further down the train from him. You, standing on the station platform, measure the speed of the ball at the same value as the person on the train.

Now the train starts to move (in the direction of the ball), and you again measure the speed of the ball. You would rightly calculate it as higher – the initial speed (ie, when the train was at rest) plus the forward speed of the train. On the train, meanwhile, the game-player will notice nothing different. Your two values for the speed of the ball will be different; both correct for your frames of reference.

Replace the ball with light and this calculation goes awry. If the person on the train were shining a light at the opposite wall and measured the speed of the particles of light (photons), you and the passenger would both find that the photons had the same speed at all times. In all cases, the speed of the photons would stay at just under 300,000 kilometres per second, as Maxwell's equations say they should.

Einstein took this idea – the invariance of the speed of light – as one of his two postulates for the special theory of relativity. The other postulate was that the laws of physics are the same wherever you are, whether on an plane or standing on a country road. But to keep the speed of light constant at all times and for all observers, in special relativity, space and time become stretchy and variable. Time is not absolute, for example. A moving clock ticks more slowly than a stationary one. Travel at the speed of light and, theoretically, the clock would stop altogether.

Click for Full Text!

Post Comment   Private Reply   Ignore Thread  


TopPage UpFull ThreadPage DownBottom/Latest

Begin Trace Mode for Comment # 3.

#3. To: BTP Holdings (#0)

If you tape the butts of two flashlights together and turn them both on, the speed of the photons issuing from one flashlight should be traveling at twice the speed of light relative to photons radiating from the other one, no?

I dunno. This is not my area.

randge  posted on  2018-08-24   13:14:34 ET  Reply   Untrace   Trace   Private Reply  


Replies to Comment # 3.

        There are no replies to Comment # 3.


End Trace Mode for Comment # 3.

TopPage UpFull ThreadPage DownBottom/Latest


[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]