Actual human beings are getting phased out of health care in exchange for artificial intelligence (AI) robots that are now reportedly overruling nurses at hospitals.
...As of early September, there were 34 vaccine candidates being tested in humans, according to the World Health Organization (WHO). Another 145 candidates were being tested in animals or in the lab, says WHO, which keeps a running worldwide list. Those are astonishing numbers, considering that less than a year ago no one had heard of the novel coronavirus, now known as SARS-CoV-2, which causes the respiratory disease COVID-19. It typically takes many years, or even decades, to develop a vaccine; until now, the speed record was held by the mumps vaccine, which went from a collected sample to a marketed product in about four years.
It's no wonder that research is sprinting ahead. Our societies and economies likely won't return to normal until a highly effective vaccine has been administered to a substantial portion of the planet's population. The search for a vaccine is now a vast undertaking, involving thousands of researchers at hundreds of laboratories around the world spending billions of dollars. It's like a moon shot in its magnitude, ambition, and intensity.
Laboratories are pursuing at least eight different types of vaccine. These include traditional ones based on inactivated viruses, as well as new, more experimental ones involving the use of genetic materialso-called DNA and RNA vaccinesas well as others based on special proteins or other biological agents.
At stake are not only human lives but also a piece of a global vaccine market that was estimated at US $35 billion even before COVID-19. Governments, philanthropies, and pharmaceutical companies have been spending accordingly. In July, the U.S. government agreed to pay pharmaceuticals giant Pfizer and German biotech firm BioNTech nearly $2 billion for 100 million doses of a vaccine, if and when it becomes available. Other major vaccine initiatives worldwide also have funding in the 10 figures.
Machine-learning systems and computational analyses have played an important role in the vaccine quest. These tools are helping researchers understand the virus and its structure, and predict which of its components will provoke an immune responsea key step in vaccine design. They can help scientists choose the elements of potential vaccines and make sense of experimental data. They also help scientists track the virus's genetic mutations over time, information that will determine any vaccine's value in the years to come.
AI is a powerful catalyst," says Suchi Saria, a professor at the Johns Hopkins Whiting School of Engineering who directs the university's machine-learning and health care lab. AI enables scientists to draw insights by combining data from multiple experimental and real-world sources," she explains. These data sets are often so messy and challenging that scientists historically haven't even attempted these sorts of analyses, she adds.