[Home] [Headlines] [Latest Articles] [Latest Comments] [Post] [Sign-in] [Mail] [Setup] [Help]
Status: Not Logged In; Sign In
Science/Tech See other Science/Tech Articles Title: New Little Ice Age by Dr. Theodor Landscheidt Schroeter Institute for Research in Cycles of Solar Activity Abstract: 1. Introduction Those scientists who are grudgingly beginning to acknowledge the sun's pivotal role in climate change are converts who had believed in the IPCC's dictum that solar forcing is considerably smaller than the anthropogenic radiative forces and its level of scientific understanding is very low, whereas forcing by well mixed greenhouse gases continues to enjoy the highest confidence levels as to its scientific understanding so that it is unlikely that natural forcing can explain the warming in the latter half of the 20th century. Actually, there had been a host of publications since the 19th century and especially in recent decades that provided evidence of strong solar-terrestrial relations in meteorology and climate ignored by proponents of man-made global warming (Koppen, 1873; Clough, 1905; Brooks; 1926; Scherhag, 1952; Bossolasco et al., 1973; Reiter, 1983; Eddy, 1976; Hoyt, 1979; Markson, 1980; Schuurmans, 1979; Landscheidt, 1981-2001; Bucha 1983; Herman and Goldberg, 1983; Neubauer 1983; Prohaska and Willett, 1983; Fairbridge and Shirley, 1987; Friis-Christensen and Lassen, 1991; Labitzke and van Loon, 1993; Haigh, 1996; Baliunas and Soon, 1995; Lassen and Friis-Christensen, 1995); Lau and Weng, 1995; Lean et al, 1995; Hoyt and Schatten, 1997; Reid, 1997; Soon et al. 1996; Svensmark and Friis-Christensen, 1997; White et al. 1997; Cliver et al., 1998; Balachandran et al., 1999; Shindell et al., 1999; van Geel et al., 1999; Berner, 2000; Egorova et al., 2000; Palle Bago and Butler, 2000; Tinsley, 2000; Hodell et al., 2001; Neff et al., 2001; Rozelot, 2001; Udelhofen and Cess, 2001; Pang and Yau, 2002; Yu, 2002) The IPCC's judgement that the solar factor is negligible is based on satellite observations available since 1978 which show that the Sun's total irradiance, though not being constant, changes only by about 0.1 percent during the course of the 11-year sunspot cycle. This argument, however, does not take into account that the Sun's eruptional activity (energetic flares, coronal mass ejections, eruptive prominences), heavily affecting the solar wind, as well as softer solar wind contributions by coronal holes have a much stronger effect than total irradiance. The total magnetic flux leaving the Sun, dragged out by the solar wind, has risen by a factor of 2.3 since 1901 (Lockwood et al., 1999), while global temperature on earth increased by about 0.6°C. The energy in the solar flux is transferred to the near-Earth environment by magnetic reconnection and directly into the atmosphere by charged particles. Energetic flares increase the Sun's ultraviolet radiation by at least 16 percent. Ozone in the stratosphere absorbs this excess energy which causes local warming and circulation disturbances. General circulation models developed by Haigh (1996), Shindell et al. (1999), and Balachandran et al. (1999) confirm that circulation changes, initially induced in the stratosphere, can penetrate into the troposphere and influence temperature, air pressure, Hadley circulation, and storm tracks by changing the distribution of large amounts of energy already present in the atmosphere. ~snip~ 10. IPCC's hypothesis of man-made warming not in the way of global cooling The IPCC's story lines, far from forecasts as practised in other fields of science, are nearly exclusively supported by runs of General Circulation Models (GCM). These models are based on the same type of nonlinear differential equations which induced Lorenz in 1961 to acknowledge that long-range weather predictions are impossible because of the atmosphere's extreme sensitivity to initial conditions. It is not conceivable that the Butterfly Effect should disappear when the prediction range of a few days is extended to decades and centuries. Some climatologists concede that there is a problem. Schönwiese (1994) remarks: Consequently we should conclude that climatic change cannot be predicted (by GCMs). It is correct that the varied and complex processes in the atmosphere cannot be predicted beyond the theoretical limit of a month via step by step calculations in circulation models, neither today, nor in the future. Yet there is the possibility of a conditioned forecast. The condition is that a special factor within the complex cause and effect relationship is so strong that it clearly dominates all other factors. In addition, the behaviour of that single dominant causal factor must be predictable with certainty, or a high degree of probability. A look at the literature shows that these conditions are not fulfilled. In addition, there are technical and mathematical difficulties. Peixoto and Oort (1992) aptly comment: The integration of a fully coupled model including the atmosphere, ocean, land, and cryosphere with very different internal time scales poses almost insurmountable difficulties in reaching a final solution, even if all interacting processes were completely understood. So it is no wonder that validated GCM-forecasts are a rare species. The IPCC-hypothesis of global warming requires that long-wave radiation to space is reduced because of the accumulating anthropogenic greenhouse gases. Actually, satellites have observed a trend of increasing tropical long-wave radiation to space over the past two decades (Wielicki et al., 2002). GCMs predict greater increase in temperature with increasing distance from the equator, but observations show no net change in the polar regions in the past four decades (Comiso, 2000; Przybylak, 2000; Venegas and Mysak, 2000). According to the most recent data, Antarctica has cooled significantly (Doran et al., 2002) instead of warming. Most important is a discrepancy between GMC-forecast and observation as to evaporation. Even if the IPCC's theoretical considerations were correct, CO2 alone could manage only about 0.8° C of warming within more than a century. This small amount of warming, however, would increase evaporation at the surface and raise the concentration of water vapour, by far the strongest greenhouse gas in the atmosphere. According to the climate models, this positive feedback would cause a much larger warming than CO2 and other weak greenhouse gases alone. So it is crucial for the IPCC-hypothesis of global warming that observation shows a decrease in evaporation in the Northern hemisphere over the past 50 years instead of the predicted increase (Roderick and Farquhar (2002). There are many other points, but they would go beyond the frame of this paper. 11. Outlook Post Comment Private Reply Ignore Thread
|
||
[Home]
[Headlines]
[Latest Articles]
[Latest Comments]
[Post]
[Sign-in]
[Mail]
[Setup]
[Help]
|