[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help] 

Status: Not Logged In; Sign In

More Young Men Are Now Religious Than Women In The US

0,000+ online influencers, journalists, drive-by media, TV stars and writers work for State Department

"Why Are We Hiding It From The Public?" - Five Takeaways From Congressional UFO Hearing

Food Additives Exposed: What Lies Beneath America's Food Supply

Scott Ritter: Hezbollah OBLITERATES IDF, Netanyahu in deep legal trouble

Vivek Ramaswamy says he and Elon Musk are set up for 'mass deportations' of millions of 'unelected bureaucrats'

Evidence Points to Voter Fraud in 2024 Wisconsin Senate Race

Rickards: Your Trump Investment Guide

Pentagon 'Shocked' By Houthi Arsenal, Sophistication Is 'Getting Scary'

Cancer Starves When You Eat These Surprising Foods | Dr. William Li

Megyn Kelly Gets Fiery About Trump's Choice of Matt Gaetz for Attorney General

Over 100 leftist groups organize coalition to rebuild morale and resist MAGA after Trump win

Mainstream Media Cries Foul Over Musk Meeting With Iran Ambassador...On Peace

Vaccine Stocks Slide Further After Trump Taps RFK Jr. To Lead HHS; CNN Outraged

Do Trump’s picks Rubio, Huckabee signal his approval of West Bank annexation?

Pac-Man

Barron Trump

Big Pharma-Sponsored Vaccinologist Finally Admits mRNA Shots Are Killing Millions

US fiscal year 2025 opens with a staggering $257 billion October deficit$3 trillion annual pace.

His brain has been damaged by American processed food.

Iran willing to resolve doubts about its atomic programme with IAEA

FBI Official Who Oversaw J6 Pipe Bomb Probe Lied About Receiving 'Corrupted' Evidence “We have complete data. Not complete, because there’s some data that was corrupted by one of the providers—not purposely by them, right,” former FBI official Steven D’Antuono told the House Judiciary Committee in a

Musk’s DOGE Takes To X To Crowdsource Talent: ‘80+ Hours Per Week,’

Female Bodybuilders vs. 16 Year Old Farmers

Whoopi Goldberg announces she is joining women in their sex abstinence

Musk secretly met with Iran's UN envoy NYT

D.O.G.E. To have a leaderboard of most wasteful government spending

In Most U.S. Cities, Social Security Payments Last Married Couples Just 19 Days Or Less

Another major healthcare provider files for Chapter 11 bankruptcy

The Ukrainians have put Tulsi Gabbard on their Myrotvorets kill list


Science/Tech
See other Science/Tech Articles

Title: Future 'quantum computers' will offer increased efficiency... and risks
Source: EurekAlert
URL Source: http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php
Published: Mar 5, 2008
Author: Zenaida Gonzalez Kotala
Post Date: 2008-03-05 15:45:51 by farmfriend
Keywords: None
Views: 117
Comments: 5

Contact: Zenaida Gonzalez Kotala
zkotala@mail.ucf.edu
407-823-6120
University of Central Florida

Future 'quantum computers' will offer increased efficiency... and risks

UCF Professor makes unique discovery, may revolutionize encryption technology

An unusual observation in a University of Central Florida physics lab may lead to a new generation of “Quantum Computers” that will render today’s computer and credit card encryption technology obsolete.

The observations are documented this week in the online version of Nature Physics under Advance Online Publication (http://www.nature.com/nphys/index.html ). The title of UCF Professor Enrique del Barco’s paper is “Quantum Interference of Tunnel Trajectories between States of Different Spin Length in a Dimeric Molecular Nanogmagnet.”

Consumers, credit card companies and high-tech firms rely on cryptography to protect the transmission of sensitive information. The basis for current encryption systems is that computers would need thousands of years to factor a large number, making it very difficult to do.

However, if del Barco’s observation can be fully understood and applied, scientists may have the basis to create quantum computers -- which could easily break the most complicated encryption in a matter of hours.

Del Barco said the observation may foster the understanding of quantum tunneling of nanoscale magnetic systems, which could revolutionize the way we understand computation.

“This is very exciting,” del Barco said. “When we first observed it, we looked at each other and said, ‘That can’t be right.’ We did it again and again and we achieved the same result every time.”

According to quantum mechanics, small magnetic objects called nanomagnets can exist in two distinct states (i.e. north pole up and north pole down). They can switch their state through a phenomenon called quantum tunneling.

When the nanomagnet switches its poles, the abrupt change in its magnetization can be observed with low-temperature magnetometry techniques used in del Barco’s lab. The switch is called quantum tunneling because it looks like a funnel cloud tunneling from one pole to another.

Del Barco published paper shows that two almost independent halves of a new magnetic molecule can tunnel, or switch poles, at once under certain conditions. In the process, they appear to cancel out quantum tunneling.

“It’s similar to what can be observed when two rays of light run into interference,” del Barco said. “Once they run into the interference you can expect darkness.”

Controlling quantum tunneling shifts could help create the quantum logic gates necessary to create quantum computers. It is believed that among the different existing proposals to obtain a practical quantum computer, the spin (magnetic moment) of solid-state devices is the most promising one.

“And this is the case of our molecular magnets,” del Barco said. “Of course, this is far from real life yet, but is an important step in the way. We still must do more research and a lot of people are already trying to figure this out, including us. It’s absolutely invigorating.”

Co-authors of the paper are Christopher Ramsey from UCF, Stephen Hill from the University of Florida and Sonali J. Shah, Christopher C. Beedle and David N. Hendrickson from the University of California at La Jolla.

Del Barco, who is a native of Spain, began teaching at UCF in 2005. He got a Ph. d degree from the University of Barcelona before moving onto New York University where he worked with Andrew Kent, a well-known quantum physicist.

It was the warm weather and the dynamic of UCF that drew him and his family to UCF. Aside from teaching physics and working on research, Del Barco is a published writer. He penned a science fiction novel that has been published in Spain by Editorial Equipo–Sirius. He collaborates with scientists from around the world including researchers in Spain, Hong Kong and across the United States.

Post Comment   Private Reply   Ignore Thread  


TopPage UpFull ThreadPage DownBottom/Latest

#1. To: farmfriend (#0)

quantum computers -- which could easily break the most complicated encryption in a matter of hours.

Utter bullshit.

nobody  posted on  2008-03-05   15:49:09 ET  Reply   Trace   Private Reply  


#2. To: nobody (#1)

Utter bullshit.

Care to expound on that?


Vote Republicrat or Democin, it doesn't matter, you still get McHillobama

farmfriend  posted on  2008-03-05   16:13:32 ET  Reply   Trace   Private Reply  


#3. To: farmfriend (#2) (Edited)

It can't beat a random one-time pad, and that's just for beginners. It'll find big keys for standard schemes (assuming there's enough encrypted text to work with), but that's hardly the claim.

nobody  posted on  2008-03-05   16:19:25 ET  Reply   Trace   Private Reply  


#4. To: farmfriend (#2)

If the keyset is large enough, one key could give "I hate you" and another key could give "I like you" for the same short message, and that doesn't even address the case where a hidden channel carries the message "like means hate today".

nobody  posted on  2008-03-06   7:03:35 ET  Reply   Trace   Private Reply  


#5. To: nobody (#4)

That makes sense.


Vote Republicrat or Democin, it doesn't matter, you still get McHillobama

farmfriend  posted on  2008-03-06   9:31:47 ET  Reply   Trace   Private Reply  


TopPage UpFull ThreadPage DownBottom/Latest


[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Sign-in]  [Mail]  [Setup]  [Help]